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Idea ● Self-referencing processing: the 

cognitive process of relating 

information, often from the 

external world, to the self (Baladi 

Nejad, Fossati, & Lemogne, 2013)

● Meme: an idea, behavior, or style 

that spreads from person to 

person within a culture

○ Aim of conveying a particular 

phenomenon, theme, or 

meaning (Merriam-Webster 

Dictionary)



Motivating 
Question

Can we use memes to study 

self-referential processing in 

the brain?



Background ● vmPFC activity associated with:

○ self-referential thought, 

○ social cognition

○ reflection on affective state 

(Mitchell, Bananji, McCrae 

2005)

● Self-judgments associated with 

more activation of vmPFC 

compared with other- judgments 

(Denny, Wager, Ochsner 2012)



Hypotheses
● Behavioral: subjects will rate 

Dartmouth memes as more 

relatable than non-Dartmouth 

memes

● fMRI: mPFC will show more 

activation in response to 

Dartmouth memes when 

compared to non-Dartmouth 

memes

○ Whole-brain MVPA: mPFC

voxels will have greatest 

weights

○ Features: mPFC parcel will 

have highest accuracy of the 

50 parcels



Behavioral 
Experimental 
Design / Analysis

Behavioral Questionnaire:
● “Is this meme about Dartmouth?” 

(Yes/No)

● Relatability (0-100)

Analysis:
● Labeling

● Two-Tailed t-Test



fMRI Experimental 
Design / Analysis

fMRI Task:
● Run 1: Pinel Localizer Task

● Runs 2 & 3: Meme Presentation

○ Randomized Order

○ Question Prompt: “Would you 

share this meme with a 

friend?”

Analysis:
● Data Preprocessing: fMRIPrep

● Beta Images

● Univariate Analysis

● Multivariate Pattern Analysis



Single Trial Model: 
Creating Beta 
Images

● Z-score for each voxel within run

● Design Matrix:
○ One regressor per meme

○ Convolved with Double-Gamma 

Response Function 

○ High pass filter with 100s cutoff

○ Linear and quadratic trends

○ Average activity with the 

cerebrospinal fluid mask

○ 24 Motion parameters

○ Global spikes and frame 

differencing spikes

○ Ordinary Least Squares 

Regression for each voxel



Results



9 Dartmouth Related Memes



Behavioral Results: 
Relatability

● Relatability Metric:

○ Non-Dartmouth Mean: 54.28

■ SD: 20.66

○ Dartmouth: 71.21

■ SD: 14.09

1. Two-tailed t-test:

1. t-value: -4.96

2. 11 degrees of freedom

3. P-value: 0.000429

Statistically significant difference 

between the subjective relatability of 

Dartmouth and non-Dartmouth memes



Univariate Results



Whole Brain 
Multivariate 
Prediction 

● Cross-validated accuracy was 

0.34 (below chance)

● Balanced accuracy was 0.19

● Maximum value across all brain 

voxels was 0.0012

● No voxel of particular importance 

for classifying Dartmouth vs. Non-

Dartmouth memes



Whole Brain MVPA Results



ROI Multivariate 
Prediction

● Cross validated accuracies are all 

below 0.2

● Balanced accuracy scores are all 

0.14

● Regions of the mPFC had 

extremely low accuracies

○ Anterior mPFC (0): 0.056

○ dmPFC (2): 0.053

○ vmPFC (32): 0.075

● Highest accuracies included:
○ Anterior Frontoparietal (23): 

0.094

○ Anterior VLPFC (25): 0.088



Accuracies



Anterior Frontoparietal (23)



Anterior VLPFC (25)



Conclusion ● 9 Dartmouth memes, 67 non-

Dartmouth memes

● Significant difference in relatability

● DMPFC and hippocampus survive 

thresholded univariate analysis

● No individual region seemed 

to drive the classification result

● Two regions with relatively high 

accuracies:

○ Anterior fronto-parietal (23)

○ Anterior VLPFC (25)



Limitations & 
Future Directions

Limitations

● Only 10 subjects, only 76 trials

● Artifact: acquisition, motion, 

preprocessing, etc.

● Unbalanced number of trials for each 

stimuli class

● Meme comprehension & visibility

Future Directions

● Investigating the sharing response

● Rating the meme’s relatability in the 

scanner

● Include general college memes

● Investigate memes related to social 

situations/interactions



Discussion
● vmPFC: self-referential tasks; dmPFC: other-

referential tasks (Cook 2014). Given 

that part of the fMRI experiment was 

having subjects determine whether or 

not they would share the meme, this could 

be a possible explanation

● mPFC activation might not have been 

particularly high due to its potential role in 

the default mode (Gusnard et al., 2001).

● Anterior fronto-parietal (DLPFC, dACC) -

sensory attention network (Ptak, 2011). 

Perhaps people paid more attention to 

memes that they felt were more relevant to 

them.

● Anterior VLPFC - implicated in limbic and 

sensory input (Kohno et al., 2015).



Thank you!
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