Preprocessing Luke Chang

What are the steps to make the raw data ready to analyze?

fMRI Noise

- Thermal motion
- Gradient and magnetic field instability
- Head movement and its interactions with magnetic field
- Physiological effects (e.g., heartbeat & respiration)

Acquisition Artifacts

- Missing slices
- RF noise
- Transient gradient artifacts/spikes
- Ghosting
- Susceptibility artifacts/dropout
- Head motion

Acquisition Artifacts

- Magnetic field
- Drift slow changes in voxel intensity over time.
- Aliasing signals that occur more rapidly than the sampling rate

Metal

Hair ties distort the brain!

RF Noise

Ghosting

Phase offset between different lines of k-space often from periodic motion (e.g., respiration, cardiac)

Susceptibility Artifact

Distortion and signal loss where air meets tissue

Variation in signal intensity over time

Steady State Equilibrium

Often we discard the first few TRs until the magnetic field reaches a steady state equilibrium Ignoring this can cause huge problems with preprocessing and statistics However, many modern scanners incorporate "dummy" scans by default.

Scanner Drift

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 9.7 @ 2004 Sinauer Associates, Inc.

Novement Artifacts

Head motion can create pernicious spike artifacts

Physiological Artifacts

Relatively Consistent Frequencies

Dagli et al., 1999 Neuroimage

Aliasing

It gets bad...

How do we fix it?

Preprocessing Overview

Distortion Correction

Can help reduce susceptibility artifact

But can also introduce artifacts, particularly if subjects move in between field map and functional scans!

Head Motion

Head motion can be realigned with 6 parameters

- x, y, z translations
- pitch, roll, yaw rotations

Realignment Parameters

Slice Timing

How do we account for the fact that slices are not acquired simultaneously?

- Generally not recommend if TR <= 2s
- Can be minimized if using interleaved vs ascending slice acquisition
- Definitely do not recommend if using multi band

Spatial Normalization

How can we compare uniquely shaped brains?

Normalize to a common anatomical space

Alternative techniques are to align based on function (Hyperalignment - James Haxby)

Bias Field Correction

Normalization processing streams

1-step normalization Functional Anatomical T1-weighted Echoplanar template template

Landmark Based Normalization

Normalize based on identifying landmarks (AC/PC) and bounding box

Talairach landmarks

Talairach bounding box

Not used much anymore Software: Brainvoyager

Volume Based Normalization

Normalize based on transforming one 3D volume into another

Most common due to accuracy vs computational time tradeoff Software: SPM-Dartel, FSL-fNIRT, ANTs

Surface Based Normalization

Normalize based on inflating cortical surface and aligning sulcal patterns

Computationally expensive (very slow), some people strongly prefer Software: Freesurfer

Nonlinear Normalization

Klein et al., 2009 Neuroimage

Diffeomorphic Registration

Widely used nonlinear registration algorithm

Apply Transformation

Apply Inverse Transformation

Inverse transform

http://nipy.org/dipy/examples_built/syn_registration_2d.html

Normalization Errors

What about special populations?

Aging

7 years old22 years old88 years oldImage: state st

78 years old (mild dementia)

Lesions

Spatial Smoothing

Benefits

- 1. Increases signal to noise
- 2. Minimizes anatomical alignment issues
- 3. Can help meet assumptions for certain statistics (gaussian random field theory)

Costs

- 1. Decreases spatial resolution
- 2. Unclear how much to smooth (e.g., 6mm)
- 3. Should different regions be smoothed with different sizes?

Convolve with Gaussian Kernel

2D Example

Spatial Smoothing

3D Gaussian Kernel

Spatial blurring

Full width at half maximum (mm)

Impacts statistics

