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How does the scanner
work?



How does the scanner
work?

)

Step 1: Place an object/subject in a
big magnet
Step 2: Apply radio waves

Step 3: Measure emitted radio waves
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Magnetic fields align
hydrogen protons

Body is composed of Mag field MRI machines have two primary
70% water Aligns hydrogen protons gradients of magnetic



T1 Relaxation/Recovery

Before RF Pulse
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12 Decay

Before RF Pulse
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RF pulse sequence for frequency
and phase within a slice

z-gradient

RF pulse
excitation

Slice selection
z-gradient

Frequency-encoding
x-gradient

Phase-encoding
y-gradient

Readout

Data points collected
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TR &TE

TR: repetition time - time between excitation (RF) pulses
TE: echo time - time between excitation pulse and data acquisition




T1 Recovery

Excitation pulse
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11 recovery and T2 Decay
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Optimal parameters for T1
weighted
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To maximize differences in tissue contrast
for T1 weighted image you need a shorter
TR and a very short TE



Optimal parameters for T2
weighted
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T; contrast T, contrast

Transverse magnetization (arbitrary units)
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To maximize difference in tissue contrast for
T2 weighted image you need a longer TR
and shorter TE



2D Frequency Information
converted into images
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K-space & image space

Image space k-space Image space

R,

x
o
7

FUNCTIONAL MAGNETIC RESONANCE IMAGING 3e, Figure 4.19 FUNCTIONAL MAGNETIC RESONANCE IMAGING 3e, Figure 4.20
© 2014 Sinauer Associates, Inc. © 2014 Sinauer Associates, Inc.




Images

—
T1-weighted T2-weighted T2*-weighted



What is BOLD?



The brain I1s active at rest
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At rest the brain accounts for
11% of cardiac output
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Alavi and Reivich, 2002, Raichle, 2010
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Rodent brain energy budget

[ Postsynaptic potentials

[] Action potentials

[] Resting potentials

[] Presynaptic transmitter release
[ Transmitter recycling

[] Housekeeping
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Blood Oxygenated Level
Dependent (BOLD) signal

A Molecule To Breathe With

Beta Globin Beta Globin
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Oxygenated hemoglobin is diamagnetic
Deoxygenated hemoglobin is paramagnetic



MR Properties

Physical
Effects

Physiological
Effects
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Blood oxygenation and T1/T2
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Stimulus presentation
changes BOLD in visual cortex
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Hemodynamic Response
Function (HRF)

primary response
negative
overshoot

initial dip



Sampling resolution
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Assume HRF is Linear and
Time Invariant
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Scaling & Superposition
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Do BOLD responses
summate linearly?
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HRF Nonlinearities
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What exactly is BOLD
Measuring?



BOLD Correlates
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Negative BOLD signals

positive BOLD negative BOLD

\ _

Shmuel et al. 2006, Nat. Neurosci
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BOLD appears to be measuring
postsynaptic neural activity

Habituation

Stimulation of
dopamine neurons

Reward-seeking

BOLD activity

Silencing of
dopamine neurons

+ Reward-seeking
¥ BOLD activity

In scanner

)

Elevated cortical Top-down control of striata
excitability dopamine signaling
“

+ Reward-seeking * Reward-seeking

Synchrony + Dopamine response

Ferenczi et al., 2005 Science



